
AD-A241 040 (7)

RAD(;,-TR-89-"28"
Final 1 vchnica, IReport
January 1990

TACTICAL EXPERT MISSION PLANNER
(TEMPLAR)

TRW Defense Systems Group DTICT
#ELECT I

Sponsored by SOO, "
Defense Advanced Research Projects Agency
ARPA Order No. 5769 -..

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be•

interpreted as necessarily representing the official policies, either expressed or implied, of the Defense|

Advanced Research Projects Agency or the U.S. Governmnent.

Rome Air Development Center
Air Force Syste ms.Cpmmand

Griffiss Air Force Base, NY-13444-5700

--v -n 02>

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-89-328 has been reviewed and is approved for publication.

APPROVED: (YF.9\e•

ALBERT G. FRANTZ
Project Engineer

APPROVED: W P I
RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COAD) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

TACTICAL EXPERT MISSION PLANNER (TEMPLAR)

Chuck Siska
Barry Press

Paul R. Lipinski

Contractor: TRW Defense Systems Group
Contract Number: F30602-85-C-0249
Effective Date of Contract: 3 September 1985
Contract Expiration Date: 3 December 1988

Short Title of Work: Tactical Expert Mission Planner
(TEMPLAR)

Period of Work Covered: Sep 85 - Dec 88

Principal Investigator: Chuck Siska
Phone: (213) 812-8189

RADC Project Engineer: Albert G. Frantz
Phone: (315) 330-7764

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Albert G. Frantz, RADC (COAD),
Griffiss AFB NY 13441-5700 under Contract
F30602-85-C-0249.

U14CLASS IFIED
MTM MSIFrIATIO OF THIS PAGE

forM App• vY id

REPORT DOCUMENTATION PAGE OMBNo 070-0188

la. REPORT SECURITY CL&SSIFICATION 1b RESTRICTIVE MARKiNGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHOrITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECL.SSIF:CATION I DOWNGPADING SCHFOULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZA1ION REPORT NUMBER(S)

TEMPLAR CDRL A010 RADC-TR-89-328
6a. NAME OF PERFORMING ORGANIZATION 16b. OFFICE SYMBOL 7a. NAME OF MO)NITORING ORGANIZATION

TPM Defense Systems Group Rome Air Development Center (COAD)
6c. ADDRESS (City, State, and ZII-,Code) 7b. ADDRESS (Cy, Statt, and ZIPCod#e)
U{5/2461
1 Space Fark
Redondo Beach CA 90278 Griffise AFB NY 13441-5700

Sa NAME OF FUNDIN'/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER'
ORGANIZATION Defense AI- 'iced (if ogplicable)

Research Projects Agenc F30602-85-C-0249
Sc. ADDRESS (City, State. end ZIP Code) 10- SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Boulevard ELEMENT NO. 14O. NO CCESSION NO

___l_ __ton VA 22209 63789F 2321 05 0-
11. TTLE (uaciod Security VasgfScation)

T.rT.CAT. EXPERT MISSION PLANNER (TEMPLAR)

12•PERSONAL AUTHOR(S) -U
Chuck Siska, Berry Press, Paul R. Lipiuski

113a. T'YPE OF REIOT 1•3b- TIPAIE COVEkE" ' 4. DATE OF REPORT (year, Month, D4y J5•PG' ONTJ

Final I FROM e_ 8 O 88January 1990 6 l
16. SUPPLEMENTARY NOTATICN

N/A17. " COSAT. CODES S• UBJECT TERMS (Conb.. o• mn• M"I' IfACrY W:d i •b? bybock nu~be
MIELD -TROUP JSUB--GROUP IT •12 05 1 Knowledge based systems/ #-,Artificial intelligence.-

""BTR(t19. ABSTRACT (ConJETnue an rev(rC if oeary anI icnty by block number)

The TEMPLAR advanced development model was designed to prove Artificial intelligence (AIl

tec0niques could be applied to the large-scale Tactical Air Force problem of Air Tasking
Orrier (ATO) generation. At over 300K lines of code, TEMPLAR is one of the large Al progrqms
ever produced for the Air Force. TEMPLAR does detailed tracking and scheduling of aircraft
and weapons use for an entire theater's Air Force assets. TEMPLAR runs on a Symbolics LISP
machine and was written in LISP, Knowledge Craft and Flavors. Object-oriented forms and
maps overlays present the information in a logical way to the users and connect to frames
and demons that maintain the knowledge base. TWPLAR allows for multiple, netwLrked,
plannixg workstations, each maintaining the entire curreut knowledge base at a corresponding
communications cost. -

20. DISTRIBUTIONIAVAILABILITY OF ABSTFRACT 2.. AESTRACT SECURITY CLASSIFICATION

W UNCLASSIFIEDOJNLIMITED Ei SAME AS RPT Q OTIC USERS UNCIASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUA.. 22b TELEPHONE (Incud, Area Code) 22L (OrFICF SYMBOL
Albert G. Frentz (315) 330-7764 RADC ýCOAD

DO Forrn 1473, JUN 86 Prewous.d*tiomare oiJolete. SECURI'Y CLASSIFICATION OF THIPAGEUNCLASSIFIED

UICL~ssiPu

UNCLASSIFIED

TABLE OF CONTENTS

1.0 General I
1.1 Purpose of Final Report I

1.1.1 Summary 1
1.2 Project History I

1.2.1 Overview 1
1.2.2 Contract Phases 2
1.2.3 Software Prototypes 2
1.2.4 Prior Automation 3
1.2.5 Deliverables 4

1.3 Project References 5
1.4 Terms and Abbreviations 8

2.0 System Implementation 11
2.1 Mixed Initiative 11
2.2 Enumeration and Ordering 13
2.3 Automatic Checking of Evolving Plans 15
2.4 Flexible Man-Machine Interface 16

2.4.1 Natural Language 16
2.4.2 Menus 18
2.4.3 Graphics 19
2.4.4 MMI Context 21

2.5 Knowledge Representation Modifications 22
2.6 Mission Task Planning 22
2.7 Knowledge Base IN
2.8 Planning 26

2.8.1 Autoplanning 27
2.8.2 Supply Tracking 32
2.8.3 ATO Presentation 32

2.9 Context Mechanism 32
2.10 Job Models 33

3.0 Test and Evaluation 35
3.1 Technical Evaluation Testing 35
3.2 Dcmonstration 35
3.3 Final Acceptance 35

4.0 System Development Summary 37
4.1 Sof"tware Development Process 37
4.2 Random Observations 39

4.2.1 Al Tools 39
4.2.2 Communication Interfaces 39
4.2.3 Map Backgrounds 40
4.2.4 Access to Experts 41
4.2.5 Implementation Language and Hardware 41
4.2.6 The Missing Tasks 42
4 2.7 TIhe Cost of Incremental Prototypts 43
4.2.8 On Appropriate Technology 43
4.2.9 Network Considerations 44

Page -

1.0 GENERAL

1.1 Purpose of Final Report

The objective of the Final Report on the TEMPLAR ADM development project is to
report on the technical work accomplished, to identify the nature of the problems
encountered in the course of completing the research, to report on both the positive and the
negative results, and to report on the status of the testing.

1.1.1 Summary

Overall the TEMPLAR project is a success. TEMPLAR demonstrates that Artificial
Intelligence techniques can be successfully applied to the Tactical Air Force problem of Air
Tasking Order (ATO) generation. To date TEMPLAR stands as one if not the largest of the
delivered Al progranm in the Air Force. TEMPLAR is large in the sense of the objectives it
met as well as the final size of the delivered code (almost 350K lines of LISP). There are
three TEMPLAR systems installed, one at RADC (Rome Air Development Center), another
at WPAFB (Wright Patterson Air Force Base) HRL (Human Resources Laboratory) and the
third, after having been previously installed and demonstrated at HQ TAC(Tactical Air
Command) for a year, is now at an operational user command, HQ 9th AF, Shaw AFB.

1.2 Project History

1.2.1 Overview

TEMPLAR was initiated to demonstrate that Artificial Intelligence techniques could
be successfully applied to the full-scale operational problem of Air Tasking Order (ATO)
generation. The TEMPLAR contract initiated in September of 1985 by the Air Force Rome
Air Development Center (RADC) with TRW, followed the development of research
prototypes at Mitre Corporations and an earlier TEMPLAR contract with another company.
TEMPLAR also followed the development of the TAOTTS system at the Air Force Human
Resources Laboratory (HRL). TAOTTS was never pursued separately following the start of
TEMPLAR development.

At the time the project began, there was essentially no automation at Ninth Air
Force (the contract-specified experts) to assist ATO planning. Two spreadsheets, PLANAID
and TASKAID, had been d&,veloped to aid sortie h-acking and tanker requiren=,. Ats
planning. Both spreadsheets ran on personal computers. The output of those spreadsheets
was able to be transferred to the Computer-Aided Force Management System (CAFMS), a
system which essentially provides data base entry and processing services during the ATO
development, via an interface between the personal computers and the CAFMS computers.

Page I

During the development of TEMPLAR, the spreadsheets were augmented with a BASIC

program to assist in the flow .ila-,ning for CAS and DCA missions.

Prior to the delivery of TEMPLAR, no comprehensive system1 of automation for the
Ninth Air Force ATO (9AF) planning process was available. Consequently, the ATO

planning process, although described in a variety of Air Foit -iblications and the subject

of a number of prior contracts, was essentially a manual effort. The key operations,

strategies, and methods of 9AF ATO planning had been developed over a number of years,

but were largely undocumented. Many of the procedures were oriented around the idea

that, by doing planning in a standardized way, combinatorial explosive numbers of

planning variations could be avoided and the ATO completed in a reasonable amount of

time.

1.2.2 Contract Phases

The TEMPLAR contract was organized into three phases. Phase one consisted of a
review of prior technology, recrairements development, and preparation of a design plan.

Phase two was the development of the system. Phase three was integration, test, and

analysis of the system. The contract called for one TEMPLAR system to be installed at

RADC, with a period of performance of 33 months beginning September 1985. All external
interfaces were to be simulated with the exception of the one for CAFMS. Contract

modifications later added a number of requirements on the project, including the following:

o Dehivery of TEMPLAR systems to HRL and to TAC Headquarters.

o Delivery of four incremental prototypes in addition to the final Advanced
Development Model (ADM) software.

o Addition of a Limited ENemy Situation Correlation Element (LENSCE)
electronic interface.

The TEMPLAR ADM software was installed and accepted at RADC in October of
1988.

1.2.3 Software Prototypes

The four TEMPLAR prototypes provided increasing functionality, leading to the

delivery of the final ADM. The summary capabilities of the prototypes plus the ADM werc

these:

It is recognised that the Air Force's CAFMS (Computer Assisted Force Management System) was a significant

otep in the automation of the TACC and generation of the ATO. It however, did nst attempt to automate the

portion of the planning process that TEMPLAR did.

Page 2

1. Forms display and sequencing from one form to another. Rudimentary data

entry capability, with no processing of entered data. Initial map display, with

pan and zoom.

2. Initial implementation of selected forms. Initial map editing capability.

Integration of Least Commitment Prototype planner for autoplanning

demonstration capability. Initial scripting capability. initial Natural Language

input capability.

3. Initial functional Target Planning Worksheet, fuel calculations, tankering

elements of Knowledge Base, and Guidance & Apportionment forms.

4. Conversion to Symbolics Genera 7.1. Full map editing capability. DMA video-

disk map backgrounds. Additional forms implemented. Initial Natural Language

input processing.

ADM. All functionality complete, including replacement of Least Commitment

Planner prototype with package planner, flow planner, air-air refueling planner,

and mission element planner. CAFMS and LENSCE interfaces complete to

Interface Control Document specifications. Incorporation of classified Blue Flag

scenario. Networking capability. Job Models. Knowledge Base editor. ATO save

and restore. Enumeration, ordering and constraint checking.

1.2.4 Prior Automation

There is an important parallel in this chronology of software prototypes to the issue

of delivering incremental prototypes. For the most part, the "Al" capabilities in TEMPLAR

arrived in the final ADM delivery and were only present in dcmonstration form in the

prototypes. The two key reasons for this were as follows:

o The effort during the first year of the program was devoted to documentation

that was required by the ccnt.act and dictated by the conventional software

development project schedule. The workload in preparing the document

deliverables up through August of 1986, culminating with the draft of the

Functional Description (FD), was such that the project had no time for large-

scale prototyping efforts to validate the Knowledge Base design and Al

algorithms. Wken combined with the fluidity of the design at the time the FD

was published, this lack of time to validate the Knowledge Base and the Al

algorithms can be used as the basis for a compelling argument that conventional

documentation schedules are not right for A! systems development. -

o The fact that there was no initial automatio,1 base for the ATO planning process

cannot be overemphasized in importance. Before the Knowledge Base and

approaches for the Al planners could be solidified, it was necessary to produce

and validate a manual, non-Al planning system. That non-Al planning system

Page 3

was the essential content of system version 4.8, which was completed after the

formal delivery of prototype 4. Most of the Knowledge Base used for the Al

planners was complete at the time version 4.8 was released.

Conventional automation could have been valuable in the development of TEMPLAR

in other ways:

o Sophisticated fuel consumption calculation software was believed to be available

from the TAOTTS development. The completeness and accuracy of the TAOTTS

code remains unclear. Testing revealed enough problems that the project decided

that it would be impractical to use it as a base for TEMPLAR fuel calculations.

Several attempts were then made with the Air Force to acquire fuel calculation

software developed organically. Problems of differing hardware/software

systems and diffuse points of contact made this impractical as well. The final

fuel calculation software used in TEMPLAR is algorithmically derived from the

simplified fuel calculations used in the PLANAID spreadsheets since these

calculations are known to be compatible with other knowledge being acquired
from 9AF.

o Communications interface definition was a continuous problem. Issues addressed

but unresolved included definition of which system version would be the

baseliiie, acquiring interf~ace specification, datat and acquiring interfac, ,tst %data.

Neither of these (or several other issues) are unique to Al systems. The existence of

prior operational automation of the ATO planning process could have served to clarify or

solve these problems and to simplify the TEMPLAR development.

1.2.5 Deliverables

TEMPLAR produced the following deliverables in addition to this Final Report:

User's Manual

Maintenance Manual
Accession For

Test Plan W!IS GRA&I 204_

bTIC TAB 0-

Interface Control Document Unannounced 0
Justification

Functional Description By

Data Base Specification Ma ributioPL
Availability Code$

"I and/or

Page 4

Interim Technical Report

Design Plan

See the next section, 1.3 Project References, for complete references for these

documents.

1.3 Project References

Following are the documents applicable to the history and development of the
TEMPLAR project and are listed for information purposes only. The primary documents
are the Interim Technical Report, Design Plan, Functional Description, User's Manual and
Data Base Specification by TRW.

TEMPLAR (Tactical Expert Mission Planner), was developed by TRW Defense

Systems Group for the U.S. Air Force, Rome Air Development Center (RADC). TEMPLAR
is the first major Air Force application of Artificial Intelligence (AI) technology to produce

an Advanced Development Model (ADM) of a decision aid which will be demonstrated by
the operational forces. TEMPLAR builds on technologies demonstrated by RADC, the Mitre

Corporation and the Defense Advanced Research Projects Agency (DARPA) to incorporate
natural language understanding, constraint and expert system based planning, and advanced

manomachine interface ,.1(MI) techniques.

The TEMPLAR project sponsor was the Air Force Rome Air Development Center
(RADC). The end users will be mission planners from the Air Force Tactical Air Control

Centers (TACC). The system was installed at the Battie Management Laboratory at RADC,
Griffiss AFB, NY, the Ninth Air Force at Shaw AFB, SC, and the Human Resources
Laboratory (HRL) at Wright-Patterson AFB, OH.

a. Project Request

Tactical Expert Mission Planner (TEMPLAR), RFP F30602-85-R-0104, issued

10 April 1985.

b. Technical Documentation

"User's Manual (Final), Tactical Expert Mission Planner (TEMPLAR)", CDRL
A007, by TRW Defense Systems Group, dated November 9, 1988.

"Maintenance Manual (Final), Tactical Expert Mission Planner (TEMPLAR)",

CDRL A012, by TRW Defense Systems Group, dated October 1988.

"Test Plan (Final), Tactical Expert Mission Planner (TEMPLAR)", CDRL

Page 5

A009, by TRW Defense Systems Group, dated August 1, 1988.

"Interface Control Document (Final), Tactical Expert Mission Plaauer
(TEMPLAR)', by TRW Defense Systems Group, dated June 1, 1988.

"Functional Description (Final), Tactical Expert Mission Planne.-
(TEMPLAR)O, CDRL A006, by TRW Defense Systems Group, dated 18 March
1987.

"Data Base Specification (Final), Tactical Expert Mission Planner
(TEMPLAR)', CDRL AO 11, by TRW Defense Systems Grou5' dated October
1987.

"Interim Technical Report (Final), Tactical Expert Mission Pl•nner
(TEMPLAR)", CDRL A005, by TRW Defense Systems Group, dated 15 October
1986.

"Design Plan (Final), Tactical Expcrt Mission Planner (TEMPLAR)", CDRL
A004, by TRW Defense Systems Group, dated 3 July 1986.

"Tactical Air Force Headquarters and Tactical Air Control Center%, TAC

Regulation 53-45, dated 26 October 1984.

"TEMPLAR Design", RADC-TR-84-134, by the Advanced Information and
Decision Systems (ADS), dated June 1984.

"Headquarters/Tactical Air Control Center USCENTAF", Regulation 55-45,
dated 20 December 1985.

"Tactical Air Intelligence Handbook", FAC Manual 200-10, dated April 1969.

"An Introduction to Air Force Targeting", AF Pamphlet 200-17, dated 11 Oc-
tober 1968.

"Aerospace Operational Doctrine, Tactical Air Operations - Counter Air, Close
Air Support, and Air Interdiction Handbook," USAF, dated 2 May !969.

c. Documentation concerning related projects.

"KNOBS -- The Final Report (1982)", R. H. Brown, J. K. Millen, and E. A.
Scarl; RADC-TR-86-95, August 1986.

"KNOBS Architecture", J.K. Millen, C. Engleman, E.A. Scarl and NUJ. Pazzani;

Page 6

(Draft), no date.

"The KNOBS System", E.A. Scarl, C.Engleman, M.J. Pazzani, J. Millen, to ap-
pear in a book edited by W. Zachary, -1985.

"KNOBS: An Integzated Al Interactive Planning Architecture%, C. Engleman,
J.K. Millen, E.A. Scarl; AIAA Computers in Aerospace Conference, Hartford,

Conn.

"MITRE/INTERLISP FRL Reference Manual', (Draft), dated December 1979.

d. Other manuals or documents that constrain or explain technical factors affecting
project development.

"Constraint-Directed Search: A Case of Job-Shop Scheduling", Carnegie Mellon

University publication CMU-RI-TR-83-22, by Mark S. Fox, dated 13 December
1983.

e. Standard or Reference documentation

(1) Programming conventions.

"RADC Computer Software Development Specification General Specification
for ", Specification No. CP 0787796100E, dated 30 May 1979 and Amendment
No. 1 to CP 0787796100E, dated 14 April 1981.

(2) DoD or Federal standards.

"Automated Data Systems (ADS) Documentation Standards', DoD 7935.1-STD,

dated April 24, 1984.

"Economic Analysis an4 Program Evaluation for Resource Management",
Department of Defense Instruction, Number 7041.3, dated October 18, 1972.

(3) Hardware Manuals and System Support Documentation

Knowledge Craft Manual Guide, Version 3.1, Carnegie Group Inc., 2 vols,

dated 18 August 1986.

Knowledge Craft Installation Notes and Release Notes, Carneg'- Group Inc.,
Version 3.1 for Symbolics 7.0/7.1, dated 17 July 1987.

Language Craft Reference Manual, Version 3.1, Carnegie Gc,,,, ýnc, dated 7
December 1987.

Page 7

Symbolics Manuals. Release 7.0/7.2, Symbolics Corp., vols 0 to 10, dated June,

July, August 1986, February 1988.

Symbolics Software Services Technical Bulletin, Genera 7.2, dated Ju.,c 1988.

"ULTRIX-32 Programmer's Manual'. Digital Equipment Corporation, Binders
I, II, liA & IIIB, dated May 1984.

"ULTRIX-32 Supplementary Documentation', Digital Equipment Corporation,
Vols• I - III, dated May 1984.

1.4 Terms and Abbreviations

AA AntiAircraft

AAR Air to Air Refueling

ADM Advanced Development model
Al Air Interdiction

AIRDEF Air Defense

ARCT Air Refueling Contact Time
ATO Air Tasking Order

AWACS Airborne Warning and Control System

BAI Battlefield Air Interdiction

BE Basic Encyclopedia

CAD Computer Aided Design
CAFMS Computer Assisted Force Management System

CAS Close Air Support
CDRL Contract Data Requirements List
COMUSCENTAF Commander US Central Air Force

COPS Combat Operations Planning

DCA Defensive Counter Air

DOD Department of Defense
DS Defense Suppression

EC Electronic Combat
EOB Enemy Order of Battle or Electronic Order of Battle
ETOr Estimated Time On Target

FEBA Forward Edge of Battle Area

Page 8

FEP Front End Processor
FLOT Forward Line Of Troops
FOB Friendly Order of Battle also form object
FP Force Protection
FSCL Fire Support Coordination Line

G&A Guidance & Allocation

HEL Helicopter
HWY Highway

ICD Interface Control Document
INT Interdiction

KB Knowledge Base

LENSCE Limited Enemy Situation Correlation Element
LMFS Lisp Machine File System

MB MegaByte
NI L Military
MMI Man Machine Interface

NL Natural Language

NTC Night Targeting Cell

OB Order of Battle
OCA Offensive Counter Air
OPNS Operations

PAA Possessed Aircraft Authorized
PCC Package Checker Cell
PD Probability of Destruction
POL Petroleum, Oil, Lubricants

RADC Rome Air Development Center
REC Reconnaissance
RWY Railway

SCL Standard Configured Load
SEAD Suppression of Enemy Air Defense

Page 9

SIF Selective Identification Feature

TAC Tactical Air Command
TEMPLAR Tactical Expert Mission Planner
TFT Time off Target
TOC Table of Contents also Tactical Operations Center
TOT Time On Target
TPW Target Planning Worksheet

UM User's Manual
USAF United States Air Force

Page 10

2.0 SYSTEM IMPLEMENTATION

2.1 Mixed Initiative

TEMPLAR had a requirement derived from KNOBS to support interleaved plann:ng

by the user and the system, a process called mixed initiative planning. In contrast to batch-

like processing, mixed initiative planning gives the user control over the scope of what is to

be autoplanned and, more importantly, gives the user the option to tune the intermediate

results of the autoplanner before invoking the planner again.

Mixed initiative planning was successful in TEMPLAR for the same reasons as in

KNOBS: TEMPLAR conducts planning by filling in forms, and it matters not to the

planning process whether the user or the autoplanner fills in the form. By designing the

autoplanner to distinguish data which are user-entered (and therefore sacrosanct2) from

those which are autoplanner-generated (and therefore fair game), any number of iterations

of the planning may be initiated.

Fields on forms in TEMPLAR map to slots in frames -- that is, every field on every

-orm is attached to exactly one slot in one frame3 . TEMPLAR retains knowledge of what

has been filled in by the user (vs. the autoplanner) by marking frames as user-owned or

autoplanner-owned; all slots in a frame so marked acquire that property.

This notion of ownership marking at a higher lcvcl than the slot reflects the concept

that the value in a slot is only valid in some larger context. For example, an SCL of 4M84

is only valid for a certain combination of mission parameters including aircraft type,

target, etc. In the design of the TEMPLAR Knowledge Base, such related sets of slots were

grouped into a frame of a class reflecting that context, such as MISSION. Marking the

entire mission as user-owned when any slot in the mission is filled in by the user, and

clearing user ownership only when all slots in the frame are cleared, captures the idea of

user or autoplanner ownership of the complete set of related mission data.

This idea of grouping slots into frames reflecting user-visible concepts imposes a

constraint on the designer of the Knowledge Base. Since the groupings of slots into frames

2 Sacrosanct iU used here in the context of sacred or inviolable.

3 Very loosely speaking, a frame is analogous to a record in a data base and a slot is analorous to a field In a

record, although the analogy fails to expreas the additional power provided by frames ani slots relative to

traditional data bases. To illustrate frames and slots, in TEMPLAR a common frame is one to represent a

single mission. Slots in that frame contain data defining the unit, aircraft type, number of aircraft, SCL, call

sign, mission number, owning package, and many other Items.

Page II

December 22, 1988 ,' -

determines the scope of what the user marks as user-owned by entering data, the designer
becomes constrained to organize the Knowledge Base such that the resulting groupings are
useful from both a user and a TEMPLAR implementation perspective. In practice, this was
never a problem -- common frame classes in TEMPLAR include missions, Target Planning
Worksheets, and other conceptual objects which are both familiar to the user and of a level
manipulated by the autoplanner. So close is this correspondence that the TEMPLAR
mechanisms for forms implementation is able "o rely upon the equivalence of frames and
user-visible groupings to implement repeated form structures and most of the key field-to-
slot linkages.

There are four distinct planning modules in TEMPLAR:4

o The package planner, which generates mission lines on Target Planning
Worksheets.

o The flow planner, which generates mission lines on unit schedules for CAS and
DCA missions.

o The air-air refueling planner, which generates mission lines on Refueling
Planning Worksheets.

o The mission line planner, which fills in mission number, call sign, SIF code, and
other information on existing mission lines.

Because of the diversity in the design of these four planning mechanisms, we
decided to make the recognition of which slots hold user-owned values and which slots were
free for autoplanning the responsibility of each individual planning module. As a result,
recognition of user-owned slots is programmed into the planners (and somewhat at hoc)
rather than automatic or the result of a broad architectural decision. This decision turned
out to be correct, however, since the ways in which the planners deal with user-owned
information differs considerably.

o The best integration of user data and automatic planning is in the package
planner during its depth-first tree walk for a single Target Planning Workshect.
User-entered data is taken as the only enumerable values during the search. In
addition, when such information is available it can be used to guide the
candidate value enumeration functions for related slots.

o This level of user/autoplanner integration was not possible in the other planners,

In TEMPLAR, a mission is a set of sorties all going to the same place at the same time with a common

objective. A package in the current implementation of TEMPLAR follows Ninth Air Force practice in that it

consists of attack missions against one or more targets ccmbined with support missions as rcquired for force

protection, defense supprension, electronic combat, and reconnaissance.

Page 12

which are more algorithmic in nature than the classic search used in the package
planner. For example, the flow planner attempts to create a set of missions
meeting a set of specifications detailing aircraft types, numbers, TOT's, inter-
arrival times, etc. IncorpGrating user data into the flow plan implies adjusting
the flow to correspond to user-entered missions. The process of effectively
allowing for small variations in the user missions to still map into the flow plan
became complex, and so the implemented flow planner ignores (but does not
alter) missions planned by the user. Similar problems in the air-air refueling
planner caused its design to plan around user-entered fuel requirements or tanker

missions rather than to attempt to integrate the user information tightly into the

tanker plan.

Mixed initiative planning is also assisted by TEMPLAR's provision of multiple levels
of initiation for the various autoplanner functions, ranging from planning one field
through planning one or more frames (e.g., mission lines, Target Planning Worksheets, etc.),
to planning theentire ATO. By providing the user with a finer degree of control than all-
or-nothing, it is possible to use the planner in only those situations in which the user
believes the system can contribute effectively.

The air-air refueling planner is an exception to this control scheme; the air-air
planner operates on an all-or-nothing basis. Additional algorithm work in that planner
would enable it to have the same degrees of control as the other autoplanner components.
The SOW specifically prohibited looking at replanning, making changes to these restrictions

out of scope of the TEMPLAR contract.

Giving TEMPLAR the power to handle the entire ATO planning process did require
some impositions to be enforced. In particular, because changes made to setup data can
invalidate elements of the Knowledge Base setup during planning, TEMPLAR imaposes some
restrictions on the order of events during planning. Essentially, these restrictions require
that certain scenario elements be setup before other setup data, and that all setup data be
complete before planning begins. Some of these restrictions may be overly rigorous, such as
precluding movement of tanker tracks once planning is started. A review of the system
could verify that some restrictions can be removed; demons can be provided to remove
others (such as the one on tanker locations).

2.2 Enumeration and Ordering

TEMPLAR augments the model of planning via filling out forms with active
assistance to the user. Included in *he active assistance features are funv.tions to provide
enumeration of values which may be entered into a field, and functions which will provide
ordered recommendations for those values.

Page 13

As implemented, TEMPLAR extends the notion of cnumeration to include both blind
enumeration and intelligent enumeration.

"o Blind enumeration is driven off of the name of the slot being filled in, and is
available nearly everywhere in the system. Internal functions attached to the slot
names are capable of returning either all the values which may be entered or, in
the case of fields with continuous ranges of values, suggested candidate values.
Blind enumeration is independent of the local or global context of the slot,
however, and so can end up presenting candidates which are invalid in context.

"o Intelligent enumeration works by taking the blind enumeration values and
processing each of them through the Formal Constraint Language constraints
attached to the slot. For certain slots, specialized inversions of constraints
directly implemented in LISP are also used. The surviving values presented to
the user are known to be valid in the context. The process takes longer than
blind enumeration, but produces better results.

"o Ordering works by passing each of the values from intelligent enumeration
through the Formal Constraint Language preferences attached to the slot. The
resulting ordered set is presented to the user. In the current system, the ordering
process is not significantly slower than intelligent enumeration.

All three of these mechanisms appear to be valuable to users, and to be applicable

across the range of TEMPLAR planning functions. There are limitations on the availability
of intelligent enumeration and of ordering, simply because constraints and preferer.nes in
the Formal Constraint Language are not available everywhere in the system. Further effort
to define such additional constraints and preference3 would extend the availability of these
functions, and would simultaneously improve the intelligence of the planning functions
driven off of the Formal Constraint Language.

The desirability of extending the delivered ADM to include more constraints Znd
preferences highlights one of the characteristics of TEMPLAR which we believe applies to
most operational-scope Al systems. Because the problem TEMPLAR addresses is so broad
and complex, it is not possible to do concrete, in-depth engineering of the Knowledge Base
with the users until nearly all of the manual-planning mode system functionality is
available. In the TEMPLAR development, this did not occur until approximately 6 months
before final delivery of the software, limiting the volume of knowledge that could be
inserted via the constraints and preferences. This bottleneck can be addressed in at least
two ways:

1. There should be a period of system evaluation with the users following delivery

Page 14

of the completed software$. This period should include support by the software
development team, and should at least have these objectives:

o Expanding and refining the system Knowledge Base.

o Training operational users in the use and administration of the system.

o Fixing problems uncovered under operational load not evident during
development test.

o Tuning system speed in areas which present problems for operational use.

2. The normal development schedule for documentation and software prototypes
should be re-evaluated for operational AI systems. In particular, the TEMPLAR
program emphasized too much documentation early in the program when concepts
and ideas were too fuzzy to be worth documenting extensively. As a result
software prototyping to clarify those ideas did not start untit later than would
have been desirab;e.

2.3 Automatic Checking of Evolving Plans

TEMPLAR provides automatic checking of evolving plans by examining each value
typed into a field on a form. A wide range of mechanisms accomplishes these checks:

o Syntactic checkers examine each keystroke to determine if the input contributes
to a syntactically legal input. Example: Times must be in HHMM format, with
the ranges for hours and minutes bounded appropriately.

o Semantic checkers determine if the complete entry makes sense in the context of
the Knowledge Base. Example: An SCL name must correspond to one of the
SCL's known to the system. If the entered values does not match a known SCL,
the system queries the user whether or not the entered name should be added to
the set of known SCL's.

o Demons, which in this case are procedures triggered when a value is stored into
the Knowledge Base, check for and attempt to maintain internal consistency of
the Knowledge Base. Example: Demons are responsible for maintaining the
internal record of what airframes are allocated to which missions at what times,
and for notifying the user when a given subunit has been overtasked.

o Constraints written in the Formal Constraint Language evaluate the input value
for compliance with restrictions imposed by good planning practice. For

To build an operational Al system as compared to an ADM there would aWo be a need for deveiopment and

operation test and evaluation.

Page 15

example, a constraint in the system checks that the aircraft type assigned to a

mission is suitable for the mission, and would warn the user if KC-135's were

tasked for package force protection.

Taken together, this range of checks provides the ability for TEMPLAR to do

extensive input checking. Adding constraints to the system, as dis:ussed in section 2.2,

would expand the range of checks performed. As delivered, the ADM does not include

enough constraints to eliminate need for thorough review by skilled planners.

As implemented, the constraint mechanism does not distinguish between constraints

which test conditions spanning multiple plan elements (e.g., missions) and those which have

only local scope (e.g. the constraint on aircraft type above). The assumption that constraints

all have global scope causes significant numbers of frames to be examined, and often

creates a severe paging load on the system which detracts from performance. Because most

constraints have local scope, adding the capability to specify that characteristic could speed

operations considerably.

When a check is violated by a user input, TEMPLAR displays a popup window with

text explaining the problem. For those checks based on the constraints, locality effects

provided by the constraint mechanism allowed explanations to be more usefully generated

from the log of failed and passed constraints for the value than from a complete

computational history.

2.4 Flexible Man-Machine Interface

The TEMPLAR Man-Machine Interface style of interaction has proved to be

extremely effective in support of the user and his ability to get the planning job done

effectively. The fact that the user can freely switch between the various forms of

interaction, between and even in the middle of commands, demonstrates the flexibility

which can be provided in a C 3 1 system. Only in rare circumstances is the user locked into

a two- or three-keystroke sequence of command processing when such switching is

disallowed, and even then the user can abort (and thus bypass) the completion of the

command sequence if desired.

2.4.1 Natural Language

In general, a natural language input interface is not appropriate in situations where

the users know their job because of its extremely low bandwidth. It just takes too long to

type English sentences (whether syntactically correct or somewhat abbreviated) compared to

how long it takes to type single-word commands, do single key-stroke commands or move a

cursor via a mouse. Natural language input interfaces are appropriate where naive users

Page 16

without know'edge of the problem area can ask in their own terms about areas of the
system, e.,acr for general browsing or during training in the problem domain and the use
of the system.

This picture is further exacerbated by the amount of computation required to handle

both a broad subset of English syntax and common language, and a large problem domain
which is rich in its internal terminological referents. Natural language grammars of this
quality must be large and parsers are correspondingly overburdened. The TEMPLAR
natural language input interface has a mean response time of 30 seconds to effectively
parse a sentence. The coverage provided by the five grammars is large, but then so are the
grammars, themselves. In the final analysis, the parser simply does not have the horsepower
to process grammars of the size and complexity present in TEMPLAR at any reasonable
speeds -- something which was not foreseen in sufficient detail until the fifth grammar was
nearly completed (although there were early concerns about the problem which resulted in
the grammar structure being partitioned into the five modules).

The TEMPLAR users have the expertise to perform their jobs efficiently and hence
a natural language input interface to the system is unlikely to be used even were it to
provide an instantaneous response time. As a result, as the project progressed, less time was
devoted to polishing this interface and more time was devoted to supporting other aspects
of the Air Tasking Order planning problem. Consequently, while the decision tree
me:hanism used to dispatch the indicated commands based on the parscd natuial languagc
input was very effective and efficient, few TEMPLAR commands were made accessible.
The decision tree was not fully populated, but treated rather as a proof of concept in the
final linkage in the natural language input interface to controlling the system. Also, the
natural language grammars and parser included both the ability to mix English words and
mouse pointing input and the ability to detect anaphoric references to objects mentioned in
earlier natural language input bascd on the type of that input. However, while these
features are present, they are not currently hooked up to the decision tree mechanism.

The English explanation of the Package Planner's reasoning was output in the
Combat Plans terminology and was very effective, but it was also voluminous. An
autoplanning run of a full-up Air Tasking Order will typically produce 250 pages of
detailed explanation. This volume of output was cause for concern, but firstly it would be
difficult to cut down in size without risk of inadvertently misdirecting the user. Secondly
it was felt that the user would typically never analyze the bulk of the data, but rather pick
and choose the details of importance. The output of the explanation did serve to slow the
Planner somewhat, but its performatice was adequate to meet the necessary criteria. A
mechanism of duplicating the explanation in a file for later perusal was implemented, but
the invocation switch was not provided at the user interface level (i.e., in the system as
delivered it is turned off, but can be turned on by a programmer). It was unclear whether

Page 17

this would be of aid to the users.

The English explanation of constraint violations and enumeration orderings was

effective. However, few constraints and preferences were implemented in the non-inverted

version which allows them to participate in explanations. Both explanatory capabilities

used the same mechanism -- a straight-forward approach of using predeveloped textual
messages filtered by the context of the current situation. Where constraints and preferences

were implemented as inversions in order to bring to be the much better execution

performance of the inverted style, explanation was unavailable due to the nature of the

preference inversion mechanism. It would be reasonable to provide a non-inverted version

for every inverted constraint or preference, and to support both explanations and enhanced

performance for each such pair of versions; however, while this wis initially investigated,
it was not pursued.

The English explanation provided by the help mechanism for the active field of a

form was adequate, but the examples provided were not tied to the eCumeration mechanism.

Had they been, the examples would have been more effective, and more closely reflect legal

choices given that they take mnto account the context of the situation.

2.4.2 Menus

The TEMPLAR system of menus allowed the user to control much of the TEMPLAR

functionality without overburdening the user with a massive selection at each step of the
way. This was accomplished through several different hierarchies of menu functionality.

The fixed form action menu (lower right of each form) and variable form navigation menu

(upper right of each form) were effective in bringing the right set of commands to the

screen at the right time. The TEMPLAR system of menus provides a particularly good
example of menus whose list of selectable options/commands is tied to the current context,

thus in large measure putting the appropriate functionality at the right place and time.

The other hierarchies were typically two-level mechanisms where the top level would

serve to select major function classes and the second level would serve to select the
particular function of the class.

However, given the number of menus available within TEMPLAR, the branching

factor and number of levels in the hierarchy, in many instances even experienced users

occasionally had difficulty determining where a particular remembered menu selection was
within the hierarchy. A fast solutior. to this, implemented for the forms navigation

hierarchy, was to provide two versions of a flat all-forms-shown menu. Each was, and
needed to be, scrollable due to the number of forms available in TEMPLAR. A second

solution which was analyzed and considered feasible, but was not implemented, was a user-

defined macro facility which would have allowed the user to associate a specific keystroke

Page 18

to the selection of a specific form from anywhere within the navigation hierarchy.

The map pull-down menus at the top of the color screen have proved too slow in

their response time. This is due to the factor of eight increase in the number of bit-planes

which needed to be saved i order to preserve the map areas under the pull-down menus.

To partially offset this, many of the menus and other informational pop-up messages were

displayed on the B&W screen even when the user's focus was on the color screen. In
retrospect, it is likely that all such temporary displays should be moved to the B&W screen -

- the increase in response time to reasonable levels more than offsets the momentary

distraction of the requiring the user to change his focus from ont. screen to the other.

2.4.3 Graphics

TEMPLAR provides a very effective map graphics display system. The software

overlay approach was very flexible in economically allowing the selective erasure of

individual screen items. The use of object-based programming mixed with frame-based

programming was extremely successful. We used the Symbolics' native Flavors object system

rather than Knowledge Craft's CRL object mechanism due to unusually poor execution-time

for the latter as an object programming support platform.

The fly-leaf corner maps allowed cut and past,; operations and the ability both to

view multiple disjoint geographic regions and to view the same region at differing scales

and with differing iconic overlays. The icon highlighting via the mouse coupled with the

simultaneous display of the icon's geo-object name on the status line allowed for quick

identification of objects in a cluttered cluster. The duplication of the B&W mouse-button

command line prompts on the color screen as well served to reduce disrupting change of

focus and consequent user distraction. The straight-forward point-grab-move map object
modification mechanism was simple and easy to use.

On the down side, the software implementation of map pan/zoom functionality was
too slow. To counter this, three different map display algorithms were implemented in
trying to remove the response-time sluggishness, but none of them was wholly satisfactory.
The final response time for a map zoom was approximately 30 seconds, but we feel that a
reasonable response-time should be on the order of 3 seconds or less. Unzooming was sped

up by caching the prior screen contents on a stack prior to a pan or zoom, so an unzoom
required only ubout 5 seconds. Only the map backgrounds were zoomeO, the icons
themselves were overlaid on the background following its pan or zoom.

The algorithms involved were:

1) an initial simple pixel replication which provided a response-time in the

neighborhood of twelve minutes per zoom.

Page 19

2) a digital differential filter (DDA) adapted to two-dimensional scaling which
produced a fairly uniform 30 seconds per zoom.

3) a quad-tree implementtion which was significantly slower at low magnifications
but became faster at replications of x16 and higher.

The quad-tree approach had two drawbacks. The first was that in order to provide
reasonable map background detail we had provided two scales of map (the mechanism is
built to handle more) and switched from the low resolution map to the high resolution
version when the magnification got high enough. This made the quad-tree less effective
until the higher resolution map was finally magnified to x16 and over, an infrequent
occurrence. The second problem was that the quad-tree approach required many more
megabytes of storage, which further slowed system performance due to paging and disk
storage requirements for the extra virtual memory involved. We did implcment a hybrid
approach where the DDA was used on low magnifications and we switched to the quad-trce
above a given threshold, but the second drawback to the quad-tree approach effectively
removed it from competition.

We could expect further improvements in the DDA if map pages were frozen in
physical memory before the DDA algorithm began its replication, but this was not
implemented. Unrol!ing the innermo-it DDA loops might also buy some time, but this was

not investigated. The most effective approach would be specialized map hardware-assist for
both thc objct;t ironic ovcriays and the pan/zoom functionality. We decided that we could
not use the built-in color hardware pan/zoom due to 1) it is unavailable on the CAD color
hardware which was required for its flicker-free display, and 2) it replicates based on the
entire screen rather than by window. Additionally we would have to erase the icons at

outdated screen-positions as well as repaint them, plus we would have to erase as well as
repaint the other informational and map windows on the color screen. The DDA algorithm
also performs scale reduction as well as magnification, which is not supported by the
hardware. In fact, for one of our map backgrounds, the initial display is a reduced-scale
version of the low resolution map and the map's full details only show up after the first
zoom.

Other minor issues also presented themselves after user-testing. We were limited as
to the colors we could display by the 8-bit CAD display limita:ion -- 24-bit color would
allow a wider variation in displayable objects and color highlighting. We mention an 8-bit
limitation rather than include the extra 9th CAD bit-plane both because it is accessed via a
slightly different mechanism, and because we had decided to implement graphics software
which would run on any of the Symbolics' color screens. The fonts used on the color screen
were a shade too small. A slightly larger more-readable font size could be employed, and
displayed in reverse video to make switching vision from the B&W to color text easier to
follow. Moving the mouse between the B&W and color screens would have been more

Page 20

convenient with an even simpler mechanism than the Symbolics' built-in two-keystroke

command.

2.4.4 MMI Context

A variety of mechanisms were implemented in TEMPLAR to support context

se•" -ty dur;ng MMI input. Each field of each form was tagged to know about the type
of expected for that field, so that both the "next character" typed into the field and
the final completed text typed into the field were separately validated to provide the
earliest possible feedback to the user on invalid entries to the fields. In addition, the final
field's value was also processed through a semantic validation based on the current state of
the knowledge base. These validation efforts are in addition to any applicable constraints
which might influence the validity of the field's value.

Contextual sensitivity based on mouse focus is exemplified in several ways within
TEMPLAR. Both the map object icons and the form fields exhibited highlighting when the
mouse cursor was po3itioned over them. This reflected a mechanism to dynamically alter
the currently available sets of commands based on what the mouse cursor was over. A
second type of highlighting was displayed when a specific field had been made the focus of
activity, and here again yet more commands based on the particular field became available.
Automatic display of a map object's name based on the currently highlighted map icon has
already been mentioned above. In addition to this, the geohraphic location is continuously
tracked and displayed for the user while the mouse cursor is over an exposed map.

While the user is working on the maps, the mouse-button status line provides
prompting help based on the stages of the current multi-keystroke command in progress.
Menus whose list of selectable options/commands is tied to the current context of operation
proved to be effective and efficient. Some of these mechanisms were based on standard

Symbolics' operating system mechanisms; however, most represent an additional layer of
design and implementation.

The ability to selectively inhibit entire classes of map objects as well as inhibit

individual map objects from appearing on a map display went a long way toward providing
the decluttering required for users to be able to easily perform their tasks. While user job
models provided an effective way to inhibit users from accidentally modifying data outside
their scope, it now appears that extending the two decluttering mechanisms to provide

standard retrievable map tailorings tied to job models and, indeed, to individual users,
would serve the user even more effectively in decluttering the maps and focusing attention

on the task at hand.

Page 21

2.5 Knowledge Representation Modifications

TEMPLAR provides the ability to modify the knowledge base directly through the
Knowledge Craft Palm editing facility. However, we deem the editing of the knowledge
base structure extremely dangerous at the user level due to the ability to inadvertently and
significantly detune the system, or to destroy key logical invariants upon which the system
depends (i.e., to destroy the logical consistency of the knowledge base). Effective

maniullation of the knowledge base structure requires both Lisp and Al programming experience
and 4n intimate understanding of the relationship between the knowledge base and the

functionality which manipulates it.

Certain types of objects, map objects for example, are modified by the user in a
reasonable way through the Knowledge Craft Coconut editing facility.

The TEMPLAR Formal Constraint Language provides the bulk of the material

needed for on-line Natural Language constraint modification, but the user interface
necessary to directly allow the users to change constraints was not hooked up. Again, such

user modification is considered extremely dangerous due to the ability to inadvertently
detune the system. It would be moderately straighi-forward to provide a TEMPLAR run-time
constraint definition facility through a form, but it is unclear whether domain knowledgeable
users would benefit from such a capability.

2.6 Mission Task Planning

TEMPLAR is able to plan all the mission types specified in the Statement of Work.

Four distinct planning approaches, discussed in section 2.1, were used to achieve this
capability. The need for a variety of planning mechanisms, a requirement not found in
KNOBS, is a direct result of the expansion to planning multiple mission types and planning
multiple plan elements simultaneously. The need for the package planner to plan mission
lines on the Target Planning Worksheet is established. The package planner is most closely

derived from the technology in KNOBS, but incorporates a number of additional elements
to handle the problems imposed by needing to plan multiple elements. With what we know
now, the package planner could be stratified to permit a comprehensive integration of least-
commitment planning techniques with the depth-first walk. As is, the NM mechanisms in
TEMPLAR can support user interaction with the abstract planning strata needed by such a

planner.

The requirements for the other three planners are explained below:

o The flow planner derives from the fpct that CAS and DCA missions are not

scheduled to achieve a specific result over a specific target, but rather to provide
a level of airborne support in an area over a range of times. Repetitive depth-
first tree searches could have been used to schedule these missions, but were not

Page 22

required. Instead, a cyclic algorithmic process applies a relatively small number
of constraints on distances and availability in order to achieve the necessary

aircraft flow.

The flow planner operates from flow specification forms, which provide a set of
lines te input the priority, station duration, mission interval, number of aircraft,
etc. The planner processes lines independently in the order determined first by
stated priority, if any, and second by order on the form. For each specification

line, the planner fills in a set of slots (unit, aircraft type, ETOT, ETFT, and
number of aircraft under all circumstances; SCL, comments, and alert code if

required).

The planner bases its processing on the sortie flow allocation capabilities internal
to TEMPLAR. The unit and aircraft type chosen by the flow planner are that
which are in range of the area using the given SCL (if any) and which have

sufficient available sorties at the proper time and which are closest to the target
area. The ETOT/ETFT are computed directly from the values on the
specification line. The SCL, if any, is taken from the input on the specification
line, and if supplied is used to constrain the selection of unit and aircraft type to
those which carry the given SCL. Because the number of combinations of unit
and aircraft type which need to be tried is very small, the flow planner can

perform an exhaustive search once the legitimate candidates have been

identified.

o The air-air refueling planner performs a great deal of algorithmic processing,
followed by a loop similar to that of the flow planner to finally allocate aircraft

to fuel requirements. The sub-elements of the AAR planL. -r arc as follows:

1. Determine ATO-wide fuel requirements.

2. Group pre-attack tanker cells with their packages and form tanker
missions for those cells.

3. Compute a reachability graph detailing which fuel requirements can be
reached by a tanker flying from prior refuelings.

4. Map tanker missions over the reachability graph to form a spanning set
of missions.

5. Allocate aircraft to tanker missions.
Despite the fact that it appears to make sensible planning decisions, the AAR
planner is, essentially, a first algorithmic implementation of an ill-defined
problem. It needs tuning to refine some of the planning estimates it incorporates,
and needs validation of some of the heuristics incorporated into its graph
algorithm. It also needs more accurate fuel flow models than were available for

Page 23

implementation in TEMPLAR.

In addition, the size and processing requirements of the AAR planner are such
2hat, taken by itself, it could be implemented on a 386-class portable PC. This

would provide a powerful tool for replanning on-board the AWACS.

o The PCC Planner fills in the mission number, call sign, SIF code, and mission

role (e.g., AR, DCA, etc.) information into mission lines. The planner is
constrained to compose these values according to guidelines published in the

Knowledge Book part of the TEMPLAR Maintenance Manual; the implementation

of those guidelines is implicit in the code for the planner. Given the ability to

compose valid field values, the planner uses a simple allocation process to
determine which of the valid compositions are available for the necessary time
interval, if any. If none of the compositions are available, new elements are

drawn from en available pool and used to compose new value resources.

For example, call signs are stored by call word, where a given call word is

assigned to and tracked on the basis of a subunit. For each call word at the

subunit, the times at which each call sign composed from that call word is
available are recorded. When a new block of call signs is required for missions

of that subunit, the set of existing availability intervals is queried. If a suitable

block is identified it is used, else a new block is opened.

2.7 Knowledge Base

The TEMPLAR development clearly demonstrates that frame-based programming
works well in dealing with large-scale models of the world. The multiple interpenetrating
frame hierarchiese provided more than adequate modularity to control the growth of the

world model. The frame-based approach provided considerable flexibility during

development in the ability to alter the world model to take advantage of new information

about the Air Tasking Order problem domain as it became available.

The TEMPLAR knowledge base is extremely large, consisting of 50,000 to 100,000

frames. The modelling achieved by the TEMPLAR knowledge base is, in detail and in

interaction, several orders of magnitude beyond that which can be handled by the current

state of the art of rule-based systems. In spite of this, transient frames are rarely built. In
retrospect, now that the bulk of the domain krowledge has been acquired and digested, it

looks as if the knowledge base in terms of frames instantiated and hierarchies dynamically

That is, from one perspective the directed graph which is the knowledge base consists, from one perspective, of

multiple trees rooted at various key classes (e.g., mission, target-mission-group, map-object, etc.). Relatione

form the arcs of these trees. Be4au3t one frame will often be a member of more than one tree, the text refers to

these connected trees as multiple interpenetrating hierarchies*.

Page 24

modified is nearly constant. There has been serious consideration given to an Al
development methodology in which the near-static frame-based world model of a problem
domain such as TEMPLAR is initially developed in Lisp and later converted to an
equivalent knowledge base representation in a conventional language. Such a methodology
seems feasible as long as the final knowledge base is, indeed, fairly static in nature.

The layering of TEMPLAR-internal objects, static domain knowledge, long-term
slow-changing domain knowledge, and daily-changing domain knowledge was very effective
as an additional approach to controlling knowledge base modularity and growth. The
earliest laid parts are still rough. Due to its nearly continuous growth over several years
and due to several course corrections which took place during that growth, there are
different areas of the knowledge base which achieve the same effect through different
mechanisms and styles.

An early and inadequate representation for time led to a later upgrade of the
representation, but this generated several deep-seated bugs in the temporal reasoning which
were only lately discovered7. The time representation was also a bottleneck in speed of
execution of many aspects of the resource accounting performed by TEMPLAR. Special
attention could be paid to designing for faster execution rather than simplicity now that a
working version exists.

The TEMPLAR system takes a bipartite view of the knowledge base. There is the
world model itself and then there is the parallel knowledge base which maintains
knowledge about how to display geographical objects on the map. Not all of the objects

modelled within TEMPLAR are map displayable, of course. Those which are each have a
dual map representation frame linked into its display hierarchy. This separation of the
world model from the information required to display it on a map has proved to be among

the most successful partitioning in the system. A similar partition with respect to the
objects displayed on the B&W forms tuins out not to have been needed due to the fact that
all fields which are "windows" onto the knowledge base are displayed alike. The key, here,
was the multiplicity of differing display techniques which were required for the map

iconic display.

TEMPLAR uses frames to model its own internal computational objects, such as the

In particular, the initial representation of time did not adequately distinguish time intervals from absolute

times, and did not adequately support the representation of ATO periods which inzluded midnight within the

period. When the changes were made to resolve these problems, a number of difficult problems were uncovered

which were due to programmers having referred to egements of the time data structures directly rather than

through access macros. Because the standard access macros had not been used, the code did not properly

respond to the representation change.

Page 25

B&W screen forms, as well as real-world objects such as aircraft and airbases. The frame-
based approach allowed us to easily add meta-knowledge, a layer of introspective
knowledge about the TEMPLAR processing itself, to control the system. Such reasoning was
used, for example, to ensure knowledge base consistency and integrity across workstations

in order to allow multiple users to be planning aspects of the same Air Tasking Order

simultaneously.

The TEMPLAR knowledge base used a wide variety of frame inheritance types. In

rare circumstances when the inheritance was performed many times and included

computationally expensive deductions, the addition of a caching/invalidation mechanism

served to provide the performance needed.

The Knowledge Craft CRL context mechanism proved to be inadequate in

controlling the fine detai; contextual merging required for TEMPLAR. Hand-tailored
mechan'sms were built in its stead.

Also, while using Knowledge Craft CRL as an off-the-shelf frame language platform
initially saved some development time, the lack of adequate software support for CRL in
"dcntifying and fixing bugs and in lifting useful features from within CRL up to the CRL-

user level, coupled with our inability to obtain a source code licensing agreement for CRL,

forced us to both bypass CRL mechanisms in some instances, and to wire changes around

other CRL mechanisms to prevent unwanted behavior.

2.8 Planning

System-wide, TEMPLAR can meet the performance requirements in the SOW,

although performance of the planner clearly depends on how well the weaponeering
matches the available resources. Pathological cases can undoubtedly be constructed which

severely extend the time to plan. The performance requirements arc poorly defined,

however, and it is not clear how well they correspond to the needs of the operational user.

"o It is unlikely that operational users will request the system to plan the entire
ATO. Accordingly, system performance in terms of planning speed and quality

for specific planning tasks is much more significant than a measure of overall

ATO planning speed.

"o The user/system interaction performance is also important, since it is a

combination of user and system actions that will produce a combined ATO.
Measures of the combined user/TEMPLAR system should be developed and

evaluated.

TEMPLAR requires approximately 200MB to store the ready-to-run image for the

Blue Flag or CalNeva scenarios. Of the storage required by internal data structures, we

Page 26

M I E E

estimate that possibly as much as two thirds of this volume is required for storing meta-

slots in the Knowledge Craft CRL representation. With the perspective of having completed

the software, it is clear that the representtion provided by CRL is much more general than
is required for TEMPLAR, and that a replacement for CRL sufficient for TEMPLAR
purposes could be written with the following characteristics:

o Be interface compatible, not requiring changes to the TEMPLAR software (with
the exception that the Natural Language interface, which relies on much more of

CRL than does TEMPLAR, would be removed).

o Be smaller and faster than CRL, possibly by a factor of two. This might be
sufficient to permit full-scale operation of the softwaic on a Symbolics 3650

having only one 368Mb disk.

o Provide full source code and data rights to the Government, enhancing

maintainability of TEMPLAR.

2.3.1 Antoplannlng

We found that the KNOBS style of automated mission planning based on filling in
the slots of a single frame was adequate to the smaller scale problem on which it was used

but required a meta level of processing to deal with the Air Tasking Order problem domain.
The number and quality of interdependencies among the various packaging problems, the

criteria in determining an adequate choice in planning an ATO, are severe. Some of the
interdependencies taken into account within TEMPLAR involve the following issues, for

example:

o between the attributes of a mission: unit, airframe, preferred unit role, airframe
role change, ordnance load, drag

o between the missions for a target: attack, attack designation, force protection.
defense suppression, electronic combat, reconnaissance

o between targets which are packaged together: target co-location, enroute threats,
air-to-air refueling locations, offload rate and quantity, aircraft-boom ratio,
whether to pursue economies of scales

The level of package planning expertise within TEMPLAR is difficult to judge.

Some aspects of the planning process as implemented in TEMPLAR are fairly naive, while
others are quite elaborate. Additionally, as with many automat:d systems, the raw cross-

The decision of whether to package a target with another target, and if so with which target, is particularly

difficult. Economies of scale occur when support missions can be shared among the attack missions for multiple

targets, but the decision to package two targets together can result in many problems, not the least of which ie

lzuufficient tanker capacity.

Page 27

correlative bookkeeping which TEMPLAR does accurately and quickly is quite beyond
ordinary manual skills.

Complex, rare cases were not addressed. For example:

o no attempt is made to add tankers to the standard flow (this is left to the AAR
graph-based planner)

o no attempt is made to deduce a need for a massive air effort (nor is the

information to do so present), so no gorilla packages are created

Certain practices within TEMPLAR, which are performed apparently naively,
actually reflect an obscure ordering in the current expert approach due to its present
manual nature in handling the large amounts of information. For example, any package
with enough unused offload and boom capacity will have a RECCE mission added to it
whether it makes sense to send a RECCE mission in with the force package to the given

target area or not. No further knowledge other than the RECCE mission will *fit" is used
in its planning. The current expert practice is actually to lay in these missions blindly and
use them as AA ,iact-holders to ensure that fuel and boom capacity are set aside. Later,
the missions are reshuffled, when the general picture of the targets to be hit has settled
down and can be manually cross-correlated to the reconnaissance requests of the day.

An early prototype of a least-commitment planning mechanism (present during the
second, third and fourth incremental deliveries) which handled a mildly extended version

of the KNOBS planning problem proved seriously deficient in terms of speed of execution.
It is not active in the final TEMPLAR delivery. It is unclear whether such an approach, by
itself, could prove : :essful in the full-up problem domain. However, as a quick rough-cut
plan generator for 44,entification of resource bottlenecks, we feel that a least-
commitment plannic ',proach can be used to advantage. Based on our experiences, both
least-commitment ana stratification should be considered in future package planners.

Numerous alterati ,is were made to the final package planner due to knowledge
which became available near the end of project development cycle. While the planner is

fairly effective, it is ncý , ,c-r whether the plan produced by the package planner is sufficiently
robust under all, and especially pathological, planning situations9 . A serious impediment
during the development life-cycle was lack of access in the early and middle stages of the

Note, however, that this issues applies only to decisions made by the autoplanuer. The mixed initiative

planning capability permits any and all decisions to be made by the %mer, and permits those decisions to be

made at any time. Consequantly, cases which exceed the ability of the autoplanner ane always subject to

resolution by human planners; therefore when taketi as a total capability, TEMPLAR does not have the

limitation cited.

Page 28

project to the Air Tasking Order planning experts. This adversely affected the depth of
understanding of the ATO problem, and led to significant delays in the development of the
important areas of the knowledge base and the various autoplanners. Late during the

project some limited access was made available. However, while this access provided a
wealth of detailed information, it also resulted in significant revamping of these areas of
the system.

TEMPLAR was designed in such a way as to never overrule a user's decision.
Related fi-lds on forms were grouped into frames and each frame was tagged as to whether

it contained a field which had a user- or autoplanner-supplied value. If such a frame was
tagged as user-owned, only empty fields would be candidates for planning. As such, when

autoplanning was invoked, the package planner would attempt to complete a partially filled
in user plan by filling in &ields around those the user had filled in, and by replacing values

in fields previously filled in by the autoplanner. This feature is termed mixed-initiative.
If some partially completed plan component was not able to be completed, TEMPLAR will

go on to attempt to complete its own version of the component, leaving the partially
complete version in the original user's state. In this way, TEMPLAR is able to bypass user-
enforced inconsistencies in attempting to achieve a coherent plan.

The package planner organizes its development of attack packages into several

phases. Overall, those phases are the following:

1. Calculation of estimates of aircraft usage assuming that each TPW receives its

first weaponeering choice for its first DMPI.

2. For each TPW, calculation of the set of viable weaponeering/tanker area
combinations (e.g., from which tanker areas, if any, can aircraft of the type
specified in weaponeering line number 1 reach the tanker and the target from
the bases at which they are stationed?).

3. For each TPW, calculation of the order in which the viable weaponcering options
will be examined, assuming that the tanker area closest to the target is used.

4. For each TPW, each of which represent a nominated target, calculation of the
other nominated targets which represent threats to aircraft enroute to the target
at hand. This partial ordering is then combined with the target priorities, the
day/night specification, and user-entered ETOT's, if any, to produce a total
ordering on the set of targets to be planned. Each target also receives an interval
which represents its earliest and latest permissible ETOT.

Once these preliminary decisions are made1°, the TPW's are then planned

10 Technically, these four steps plus the final detailed planning would be the basis for a fully stratified planner

Page 29

individually in the order determined in step 4, which may vary from the strict priority

order to reflect threat dependencies. For each TPW, the following steps arc carried out.

1. Attack missions are planned first on the TPW. The first (in the sense computed

above) weaponeering option which meets all constraints is used. When tanker

assets are assigned, the planner attempts to combine the attack on the "current"

TPW with that on a TPW already planned for which the targets are sufficiently

close and for which there is adequate fuel on the tanker to support the

additional missions.

2. After the attack mission is planned, laser designator attackers are added if

required by the attack weapons load.

3. Force protection missions are then assigned based on the degree of air-air threat

expected. The missions scheduled must fall within per-package limits on

estimated fuel offload from the pre-tanker, and can only be scheduled if

sufficient sorties are available.

4. Wild Weasel missions are scheduled if terminal area threats are expected which

can be defeated by such aircraft. These missions, and the EC and RECCE

missions planned next, are also subject to availability and fuel constraints, and

are not planned if those constraints are violated.

5. An electronic combat mission (EF-l 11) is scheduled if adequate Wild Weasel

support was not available.

6. A reconnaissance mission is scheduled if fuel is available on the tanker and

sorties are available. These missions are placeholders, intended to reserve fuel on

the tankers (necessary since the recce target list is not expected to be available

until somewhat after package planning is complete). Later in the planning

process, these dummy recce missions are stripped out and the actuai missions

responsive to the recc.- target list entered.

To illustrate the idea of threat and ETOT dependency, suppose that an airbase is the

priority IA target, and a missile site immediately in front of it is the priority ID target.

Further, suppose that the missile site has been specified with an ETOT of 0730. Because

the missile site threatens aircraft attacking the airbase, the missile site will be planned

before the airbase, violating strict priority order. Further, the ETOT for the airbase will

be restricted to be after 0730, the fixed ETOT for the missile.

It is a straight-forward procedure to perform an autoplan run, change some of the

governing information (e.g., the weaponeering options for the attack mission), and reinvoke

the planner again to see the differences in the resulting plan. In addition to the planning

using least-commitment planning approache.

Page 30

forms, there is a group of setup forms which provide initializing information about the

static and slowly changing aspects of the war. Once planning has begun, these forms

cannot be modified -- to prevent kr.owledge base inconsistencies. There is nothing unusual

about these setup forms which prevents the user from being able to change the information

thereon, but the required implementation to forward those changes to the already planned

portions of the ATO is not present in TEMPLAR. Had the requirement to avoid the
"replanning" problem not been levied on TEMPLAR, the required work could have been

done. Replanning in the face of changes once the plan has been partially built is not a

difficult problem, but it is a pervasive one. Parts of TEMPLAR handle what might be

called replanning while other parts do not. The mechanisms needed for replanning support

have all been proven to work. In the programmers opinion, the cascade of changes needed

to handle replanning based on a change in some precondition is straight-forward to

implement (albeit large-scale) and is implementable in a fundamentally tractable fashion in

a high-performance planning system.

Of the four autoplanners implemented in TEMPLAR, only the package planner

includes a generate-and-test component as can be seen from the planner explanations. In

reality, very little is generated and tested due to the amount of knowledge from the

problem domain incorporated into the planner itself. While extensive use of meta-

knowledge is made during planning, no one simple generalized control mechanism or

paradigm -tooA out as bo.th.,, sufficiently capable of handling the complex knowledge

interrelationships and sufficiently fast to meet the performance criteria required. The Air

Tasking Order planning domain has been categorized as of the "stereotypical planning

problem" type. Nonetheless, there are significant aspects of other problem types present.

The knowledge gained during the development of TEMPLAR with respect to the

issues of planner generality versus AI planning "paradigms" versus the "type" of planning

problem under consideration has led us to the following conclusion. Specific planning
"paradigms" have been associated with specific types of planning problems. We believe that

foi any sufficiently rich planning problems (and by this we mean probl.;ms which require

both complex knowledge as opposed to complicated bookkeeping and wiich include bodies

of knowledge in which people must be trained in order for them to perform well), these

problems will all be seen as "stereotypical planning problems". Only the smaller simplified

knowledge-poor problems can legitimately be viewed as of other problem types. Single

paradigm approaches are seen, in this light, merely as higher-level weak-methods approaches

in which the domain knowledge is forced willy-nilly into the chosen paradigmic mold. Our

recommendation is to be eclectic, to fit the various paradigms to the problem and be ready

to bend them as necessary -- let the knowledge be the guide.

Page 31

2.8.2 Supply Trackliag

TEMPLAR defines a hierarchy of weapons assemblies. Weapons themselves, which
have no tactical unit association by type, are grouped into loads. A load is a set of
weapons, with the quantity of each weapon in the load specified. A typical load might
include a set of bombs plus the racks needed to mount them (note: racks, pylons, etc. are
considered weapons in this context). Every load is associated with a tactical unit.

Loads are then grouped into SCL's. A typical air-air SCL might consist of two loads,
one for AIM-7's and one for AIM-9's. Each SCL specifies the name and quantity of the
loads it includes. SCL's are also associated wil- tfactical units.

Mission oidnance is specified by filling in the SCL field for the mission. Supply
tracking demons in TEMPLAR then process the hierarchy under that SCL to determine how
many units of every expendable weapon in the SCL are being consumed by the mission. A
report providing totals by weapon type is available as a form.

Forms are also available to enter availability information for weapons by airbase.
Current weapons usage by airbase is also reported on those fo ins. The user is not informed
when more than the available weapons at a base have been consumed during planning.

2.8.3 ATO Presentation

The ATO is visible in TEMPLAR via the extensive number of forms implemented.
Most of the detailed mission data are available in the unit schedule forms, for which there
is a command to display and print all non-empty unit schedules. Summary data are
available in other forms. The data on the forms are kept current via a Clexible forms
display system, including the Forms Editor and Forms Compiler tools plus extensive MMI
software to provide and update form-to-Knowledge Base links. That software also makes
updlates and changes to the forms straightforward. The tradeoff for that flexibility was
that forms require extensive computation to build the first time they are displayed, leading
to a setup requirement that forms should, to the maximum extent possible, be pre-built and
saved to disk to enhance the speed of the system. As with most areas of TEMPLAR, tuning
of the forms construction software for additional speed is possible.

2.9 Context Mechanism

The context, or 'What If" mechanism in TEMPLAR is applicable to nearly all
functions of the system rather than being restricted to developing force packaging options.
Contexts (copies of frames which shadow the original versions) in the frame system
provided the basis for this functionality. The context merge tools of CRL were completely
inadequate, however, providing no user control, no user visibility, no ordering control, and

Page 32

no demon firing. In order to solve these problems, keep the knowledge base consistent with
the network, and provide control/visibility, it was necessary to write software to perform

context merge at the form field level.

2.10 Job Models

Job models in TEMPLAR are implemented using both a frame hierarchy and the
LISP machine login process. The user name and specialized initialization actions (including

setup of default printer access) is done via LISP machine login. Controls on forms
accessibility, KB editor access, and other TEMPLAR--pecific features are recorded in

frames; the slot values are Lxplicitly interrogated by the TEMPLAR software providing
associated functions.

User tools to edit, create, and destroy job models would be useful, as would the
addition of keystroke mar':us, display specifications, and map % indow setups.

Page 33

3.0 TEST AND EVALUATION

3.1 Technical Evaluation Testing

The technical evaluation testing was performed as a part of the Phase III portion of
the TEMPLAR contract. This testing was performed at TRW's Al laboratory, Systems
Engineering and Development Division. The technical evaluation testing consisted of
testing the capabilities of the TEMPLAR ADM against the technical goals as defined in
section 4 of the 'Test Plan (FINAL), TEMPLAR', CDRL A009, dated August 1, 1988.

3.2 Demonstration

As a result of contract changes only one demonstration was required. This
demonstration took place at RADC the week of October 18-21, 1988. The demonstration
consisted primarily of demonstrating capabilities not previously delivered or seen by the
Government. The major capabilities demonstrated included the package planner, which
replaced the pr-vious prototype Least Commitment Planner, the flow planner, the air-to-air
refueling planner, and the mission element planner. Also demonstrated were the job models,
the CAFMS and LENSCE simulated interfaces, enumeration, ordering and constraint
checking. Other capabilities demonstrated were portions of the technical goals as defined
in section 4 of the "Test Plan (FINAL), TEMPLAR", CDRL A009, dated August 1, 1988.

3.3 Final A~ceptaoce

The final acceptance test took place at RADC the week of October 18-21, 1988. The
acceptance test followed the System Acceptance Test Description, section 7, of the *Test
Plan (FINAL), TEMPLAR", CDRL A009, dated August 1, 1988. Since the demonstration
preceded the acceptance test at RADC it was not necessary to rerun the demonstration.

Page 35

4.0 SYSTEM DEVELOPMENT SUMMARY

4.1 Software Development Process

Much of the system was, after the fact, *conventional" software needed to automate

the task in the first place. This includes software for user interface, ATO representation,

system mrnag•ment, network control, etc. While ATO representation also includes

Knowledge Base development, it is important to realize that all of this effort becomes much

simpler if a conventiunal manual system already exists and can be used as a basis for

development. To illustrate, suppose that a version of TEMPLAR providing all the forms

and manual functionality but none of the planning assistance existed at the beginning of

the project. By inference, then, the following work which had to be done for TEMPLAR,

would have ,lready been performed:

o The process and information flow for ATO planning would be defined in

complete detail. This importance of having this cannot be overemphasized.

Although the conventional system would, in essence, amount to a relational data

base with forms for completing tables in that data base, knowledge of those

tables, relations, and the flow of information from one to the next is a major

requirement for Knowledge Base design.

o One version of a user interface would have been defined. Ideally, user comments

on its strong and weak points would be known.

The development of TEMPLAR was such that the "AI" components were developed

in parallel to these conventional elements. While it may be the case that this reduced the

calendar schedule, it is clearly the case that it lead to a great deal of rework when

prematurely-developed ideas did not correspond to the requirements of conventional ATO

plLnning. An earlier emphasis on clearly defining the conventional system processing

world have solved many of these problems.

If TEMPLAR were to be re-designed and re-coded, much of the conventional codo

could be written in conventional ways, with conventional languages and ported to

conventional hardware. It is our belief, however, that there are core elements of the

planner for which adaptation to conventional languages and hardware would be a gross

mistake. Instead, we recommend that future programs embedding Ai into operational

systems use a hybi id approach, embedding Al hardware (such as a co-processor Doard) into

conventional workstation platforms, and achieving a combined software suite where

conventional functions are implemented on the conventional side and Al functions are

implemented on the LISP side.

It is an incorrect extrapolation, however, to assume that implementation of the
conventional software elements, much less the Al elements, should be done conventionally,

Page 37

as these statistics show:

Operational LISP Code 1a$,71? $5.24

Operational C Code 2,92 2.64
Forms Fditor 11,4S7 3.40
Form Mapping Data 11,a14 S.38
Forum Compiler 5,414 1.60
LISP Source Code Control Syat*m 4,1160 1.44
Utilitie and Tools 1,522 0.46
Claisifled Scenario Data JU7.
Total Hand-Coded Software 255.458 75.96

Form Definition File 2,674 0.78
Window Definition Files fl
Total Machine-Coded Software 80,830 24.03

Total TEMPLAR Source Code 8WIMt

Other indicators also support the notion that the TEMPLAR development process was
fundamentally different from convention.al development-

o There are no source code listings of the system. Programmers used the on-line
source code, assisted by the tools available on the Symbolics workstations.

o Despite the size of the system, configuration control, integration, and system
builds required less than a one-person level of effort. This too was a result of
the tools inherent in the Symbolics LISP machine plus the simplicity of building
additional software tools in that environment.

o The actual lines of code developed were significantly higher, since a number of
major elements were re-written when new knowledge came to light or when
initial implementations proved unsuitable. Some elements were re-written several

times. Including re-work done in mid-stream to adapt to a major operating

system change, it is possible that as much as 60 percent of the software was re-
written.

o Capital investment per programmer was significantly higher than on conventional

projects in which multiple programmers share a single conventional workstation,

or in which multiple programmers share a single mainframe via terminals. In the

case of TEMPLAR, the average workstation cost was approximately $100K, and
on average every programmer hpd a dedicated workstation. When network code
was being developed or tested, a single programmer could productively occupy 2-

3 workstations (this was also true when new versions of the system were being

built). Even including the capital costs in the cost per line of code and backing

Page 38

out extra hours worked by the programming staff, TEMPLAR was still
remarkably productive.

4.2 Random Observations

A number of other issues arose in the development of TEMPLAR beyond those
discussed earlier in this report. The following attempts to identify the more important of
those issues and suggest how future projects can deal with them advantageously.

4.2.1 Al Tools

The use of purchased tools, such as Knowledge Craft. enabled a faster start after coding
began, but ultimately hindered development. In particular, because of the central role of the
frame system in the design of the software and because of the complexity of the TEMPLAR
Knowledge Base, the inability of TEMPLAR to obtain an agreement from the vendor for
source code access to Knowledge Craft slowed development materially while workarounds
for problems were sought. The generality present in Knowledge Craft, not all of which is
required for TEMPLAR, ultimately made the delivered ADM larger and slower than needs
be. We estimate that a new frame system, replacing the elements of Knowledge Craft used
by TEMPLAR with a TEMPLAR-specific design, can be written straightforwardly so as to
both increase speed and decrease space requirements by a factor of two.

4.2.2 Communication Interfaces

Communications interfaces are both critical to operational use of TEMPLAR and
were, as is for most operational systems, a major source of problems. In order to have the
information base for planning, TEMPLAR requires input of large quantities of data. Much
of this data is he'd in the LENSCE system, yet a lack of suitable communications interfaces
(and definitions thereof) made it impossible to construct the electronic link. The LENSCE
input link finally implemented was to have been tape-based; delays in receipt of test data
made interoperability testing of even the tape interface impossible. Lack of interface
definition caused several key information elements to not be available for extraction from
the interface data records, even though they are apparently there somewhere.

Similarly, information barriers made it impossible to test TEMPLAR for interface
with the CAFMS system and (worse yet), made it necessary to use a clumsy approach of
terminal emulation via personal computer to transmit thi data. This is so despite the fact
that the new version of CAFMS is hosted on a VAX, and can apparently be run on the same
physical VAX as was delivered for TEMPLAR. Logically, the interface between the two
systems should have been via a shared database. (Actually, the same can be said of
LENSCE; again, what was delivered falls far short of the integrated, interoperable software
suite on a single VAX host that should have been possible.)

Page 39

The operational consequence of not having been able to overcome these
communications interface problems -- management problems and not technical ones -- is
that the data which should flow into and out of TEMPLAR smoothly and rapidly is
bottlenecked, and may end up being hand typed. This defeats much of the advantage of
automation in the first place.

4.2.3 Map Backgrounds

Because so much of ATO planning is involved with maps, the map displays and map
backgrounds in particular were critically important. Initial TEMPLAR maps used World
Data Bank II country outlines; the proposed map backgrounds initially were to be derived
from DMA digital data.

Unfortunately, comprehensive DMA digital coverage in the area of interest was not
available, and what data did exist was difficult to obtain in large volumes when requested.
As a result, the program approach was changed to use map backgrounds derived from DMA
video disk maps. Although in general this approach worked well, the process and results

had the following problems:

o The map data base is large no matter how it is stored, and when processed via
the CPU and bitmap graphics in a workstation, is slow to access from disk and to
manipulate.

o The video images are in NTSC video format. Hundreds of video frames had to
be spliced together to form a single composite bitmap of the background, In the

process, the color maps of the images had to be standardized (and constrained to
a smaller set of colors at that), and the offsets and overlaps between frames
resolved. The video disk images were not constructed with this in mind. Severe
keystoning from the top of the map to the bottom occurred, as did major color

shifts from one map zone to another. The resulting process we used was
expensive and time consuming. Automated aids to the splicing process were not
possible, as the format of the data files showing the geocoordinates and video
disk address of a given frame is proprietary to the developing company and was
not available to the project.

o In order to provide the maximum color fidelity, background color maps were
derived individually for each map background processed. Because the Symbolics
(and most other workstations) color hardware only supports color maps on a per-
screen basis, it is not possible in the current TEMPLAR softwave to support the
use of multiple bitmaps providing varying degrees of resoiution (e.g., 1 to 2
million as well as I to 14 million). Constraining both images to the same color
map would permit simultaneous display of both resolution images, but would
degrade color fidelity. Color hardware supporting additional planes would also
solve the problems, but would increase the hardy, are cost and increase the size of

Page 40

the saved images.

4.2.4 Access to Experts

In retrospect it is clear that more access to experts was needed. We a/so necded a

complete planning walkthrough from those experts at the begining. yet didn't really have one

until the very end. Funnelling dialog with experts through some intermediary is a sure way

to kill a project such as this. We were fortunate to be able to talk to the experts directly at

times. Best would have been to have had resident experts for the first 6 months and last 9

months, plus telephone calls and meetings in between. The degree of user involvement

needed was underestimated by us and by the Air Force.

4.2.5 Implementation Language and Hardware

Parts of this system will be difficult or awkward to convert into conventional code, and

the result will be hard to maintain. This is not to say it cannot be done, but to say that the

decision to implement an ATO planning system in C on strictly conventional hardware is

not one to be made lightly. The major issue is memory management; others include the

widespread use of eval and apply. The resulting Ada or C software will be difficult to

expand and enhance.

For example, the network implementation relies on passing small code fragments to

other machines for execution. This is a powerful, flexible mechanism that supports a wide

variety of operations without modification. While the networking in TEMPLAR can

certainly be done via conventional approaches that rely on messages and code to interpret

those messages, it will be larger and more brittle than the current LISP-unique approach.

As another example, it is commonly held that LISP (and LISP garbage collection in

particular) is incompatible with operational systems. While garbage collection is certainly a

concern in the design of such systems, it is worth observing the following facts:

o The design of TEMPLAR is such that users will re-boot the system once per day,

starting over each day with a fresh system.

o Most of the data structures in TEMPLAR are either permanent and pre-built, or

else highly transient and therefore quickly and efficiently reclaimed by the

Symbolics ephemeral garbage collector.

o On a machine with approximately 726KB of disk attached, so that a large swap

space is available, the onerous, hours-long garbage collections associated with the

LISP stereotype are not required during normal TEMPLAR operation.

The argument that the Air Force cannot maintain LISP is not a sound reason for

Page 41

wholesale conversion to conventional hardware and C. Despite LISP's relative obscurity

among the ranks of common languages, that will not be the issue making organic support of

operational AI systems difficult. Regardless of language, the software which achieves the

broad, powerful functionality of TEMPLAR (and perhaps any operational Al system) can

be very large and very complex. Maintenance of such software requires very highly skilled

programmers familiar with the AI technology used in the system. Examples of these

technology elements include frame systems, inheritance and object-oriented programming;

none of which are unique to LISP. If anything, LISP simplifies the maintenance problem in

the sense that it removes the necessity for the programmer to be concerned with

housekeeping details which will surface in a C or Ada implementation.

The critical implication of this is that existing Air Force software support assets must

change to meet the challenge of operational Al systems, and that the nature of the plan to do

that support will have greater impact on the choices of implementation language and platform

than any other factor. Without such a plan, decisions about the supportability of one or

another implementation language and platform are difficult to justify as more than

informed opinion.

4.2.6 The Missing Tasks

As an Advanced Development Modcl TEMPLAR did not answer the following

operational related questions:

o What are appropriate methods and techniques for validating the knowledge and

methods incorporated into an operational Al-based system?

o What are aporopriate methods and techniques for collecting and inserting new or

changed methods and procedures into an operational Al-based system?

o What are appropriate methods and procedures for providing software and

hardware support for an operational Al-based system?

o What are appropriate questions, methods, and procedures for evaluating the

performance of an operational Al-based system?

o What are appropriate test methods and standards for turnover of an operational

Al-based system to the user community?

o How can the results of this evaluation be incorporated into future system

development efforts?

The answers to these questions are critical for future Aanning of programs which

intend to use AI in an operational role. Because of the differences between laboratory

evaluations and operational use of a system, it is simply not possible to answer these

questions with a high degree of confidence other than through development and operational

Page 42

test and evaluation.

4.2.7 The Cost of Incremeatal Prototypes

From a development standpoint, agreeing to deliver the internally-scheduled
developmental prototypes was a serious mistake. These prototypes, originally scheduled as
internal systems-integration milestones at approximately 4-month intervals, became formal

contract deliverables as part of a contract modification.

Unfortunately, we seriously underestimated the effort required to transform these

internal prototypes (which as planned were not completely debugged, and were really only

suitable for TEMPLAR programmer use) into ones which could be released for examination
and evaluation by non-programmers. A great deal of re-work and lost schedule was caused
by this decision. The problems encountered included the following:

o Mechanisms which were incompletely built could not be left incomplete, as users
might stumble into them and hence into the debugger. Accordingly, either a

throw-away mechanism had to be built in the interim, wasting effort, or else the
real mechanism had to be built quickly, without sufficient time to think through

all the implications. Examples of TEMPLAR software which were thrown out
and completely re-written due to this effect include the initial versions of the
Guidance and Allocation forms, which were too slow to be used, and the map

edit software, for which there was insufficient time in the initial release to
connect it to the Knowledge Base. There were many others.

o Since Integration and Test (plus writing the User's Guide sections and editing
that document) consumed 3-4 weeks prior to delivery, and since preparation,

conduct, and wrapup of Knowledge Acquisition sessions consumed 2-3 weeks
after each delivery, only 6 or 7 weeks of design and development (i.e., about 50%

of the time) were available every 13 weeks.

This is not to say that the idea of incremental deliveries from the project was in

itself wrong -- the major problem was that the deliveries were scheduled too frequently,

and there was no flexibility in their dates to allow for solving development problems.

4.2.8 On Appropriate Technology

It has beep observed that TEMPLAR uses 10 year old technology and therefore is in

some senses a technology failure. This criticism is correct in fact but irrelevant in

conclusion. The useful question to ask, rather than whethei or not the software
incorporates the latest in Al technology, is whether or not TEMPLAR applies appropriate

technology to the problem being solved and whether or not it applies it effectively.

Page 43

We believe that the frame technology used in the TEMPLAR knowledge base is the
correct technology for use in representing the force planning problem. TEMPLAR has
added to this technology in at least these ways:

" TEMPLAR showed that a flexible, responsive, powerful user interface can be
merged into a frame system, and indeed can apply the power of that
representation to the problem of simplifying a very complex user interface.

"o TEMPLAR showed that the scale of the operational force planning problem is
such that rule-based systems are impractical for its solution. The TEMPLAR
Knowledge Base consists of about 70-100 thousand frames once the system has
been fully init;alized. This is significantly larger than most knowledge-based
systems, with strong implications for the sizing of the hardware platform and for
selection of the representation and inference-generation technology.

"o TEMPLAR showed that rule systems are desirable as integrated components of
frame systems, however, and that existing, state-of-the-art knowledge base
products do not provide the necessary integration of rule and frame systems.

One possible formalization of the techniques applied in TEMPLAR would be to
apply RETE net-type rule systems in which the set of active rules and the

current working memory content is determined by the system's focus and
inheiitance from the frame system. This is a significant generalization from the
single-ruie-set/single-working-memory capabilities of current rule-based

technology.

4.2.9 Network Considerations

TRW proposed a networked system of TEMPLAR workstations in order to be
responsive to the operational requirement of involving many individuals in the planning
process. This requirement has been validated through the TEMPLAR development; a single-
workstation system might be able to plan an ATO, but would be useless in the operational
context. The implemented TEMPLAR software incorporates a successful mechanism for

distributing the planning process across a network, including the following components:

o A networking backbone capable of linking multiple workstations together and

maintaining the Knowledge Base in a consistent state across that network.

o Mechanisms for coordinating the actions of multiple active planners to prevent
simultaneous modification of the same Knowledge Base elements.

o Mechanisms for coordinating resource allocation across the network.

o Mechanisms for providing results of planning decisions across the network.

Implementation of TEMPLAR as a distributed network of workstations provides the

Page 44

' 0: ,, . ---'2 -

ability to allocate system resources to the development of multiple ATO's simultaneously.

In addition, the use of multiple distributed workstations applies greater computing power to

the planning process, and provides hardware redundancy and sizing flexibility niot possible
iu a centralized system.

Pe

Page 45

